Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
Molecules ; 29(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38398620

RESUMO

Cyclic tetrapyrrole derivatives such as porphyrins, chlorins, corrins (compounds with a corrin core), and phthalocyanines are a family of molecules containing four pyrrole rings usually coordinating a metal ion (Mg, Cu, Fe, Zn, etc.). Here, we report the characterization of some representative cyclic tetrapyrrole derivatives by MALDI-ToF/ToF MS analyses, including heme b and c, phthalocyanines, and protoporphyrins after proper matrix selection. Both neutral and acidic matrices were evaluated to assess potential demetallation, adduct formation, and fragmentation. While chlorophylls exhibited magnesium demetallation in acidic matrices, cyclic tetrapyrroles with Fe, Zn, Co, Cu, or Ni remained steadfast against demetallation across all conditions. Phthalocyanines and protoporphyrins were also detectable without a matrix using laser desorption ionization (LDI); however, the incorporation of matrices achieved the highest ionization yield, enhanced sensitivity, and negligible fragmentation. Three standard proteins, i.e., myoglobin, hemoglobin, and cytochrome c, were analyzed either intact or enzymatically digested, yielding heme b and heme c ions along with accompanying peptides. Furthermore, we successfully detected and characterized heme b in real samples, including blood, bovine and cod liver, and mussel. As a result, MALDI MS/MS emerged as a powerful tool for straightforward cyclic tetrapyrrole identification, even in highly complex samples. Our work paves the way for a more comprehensive understanding of cyclic tetrapyrroles in biological and industrial settings, including the geochemical field, as these compounds are a source of significant geological and geochemical information in sediments and crude oils.


Assuntos
Espectrometria de Massas em Tandem , Tetrapirróis , Animais , Bovinos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Protoporfirinas , Mioglobina , Heme
2.
Int J Mol Sci ; 24(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37685864

RESUMO

This study investigates the ethanolic extract of dried walnut (Juglans regia L.) shells upon hammer milling (HM) and ball milling (BM) grinding processes. Marked differences were observed in the attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectra. The two extracts were investigated by reversed-phase liquid chromatography coupled with electrospray ionization and high-resolution mass spectrometry (RPLC-ESI-HRMS). Following enzymatic digestion, the fatty acids (FAs) were examined, and tandem MS of epoxidized species was applied to establish the C-C double bond position; the most abundant species were FA 18:2 Δ9,12, FA 18:1 Δ9, and FA 18:3 Δ9,12,15. However, no significant qualitative differences were observed between FAs in the two samples. Thus, the presence of potential active secondary metabolites was explored, and more than 30 phenolic compounds, including phenols, ellagic acid derivatives, and flavonoids, were found. Interestingly, the HM samples showed a high concentration of ellagitannins and hydrolyzable tannins, which were absent in the BM sample. These findings corroborate the greater phenolic content in the HM sample, as evaluated by the Folin-Ciocalteu test. Among the others, the occurrence of lanceoloside A at m/z 391.1037 [C19H20O9-H]-, and a closely related benzoyl derivate at m/z 405.1190 (C20H22O9-H]-), was ascertained. The study provides valuable information that highlights the significance of physical pre-treatments, such as mill grinding, in shaping the composition of extracts, with potential applications in the biorefinery or pharmaceutical industries.


Assuntos
Juglans , Nozes , Cromatografia de Fase Reversa , Indústria Farmacêutica , Etanol , Ácidos Graxos , Taninos Hidrolisáveis , Fenóis , Extratos Vegetais
3.
Proteomics ; 23(23-24): e2200427, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37691088

RESUMO

Food allergens are molecules, mainly proteins, that trigger immune responses in susceptible individuals upon consumption even when they would otherwise be harmless. Symptoms of a food allergy can range from mild to acute; this last effect is a severe and potentially life-threatening reaction. The European Union (EU) has identified 14 common food allergens, but new allergens are likely to emerge with constantly changing food habits. Mass spectrometry (MS) is a promising alternative to traditional antibody-based assays for quantifying multiple allergenic proteins in complex matrices with high sensitivity and selectivity. Here, the main allergenic proteins and the advantages and drawbacks of some MS acquisition protocols, such as multiple reaction monitoring (MRM) and data-dependent analysis (DDA) for identifying and quantifying common allergenic proteins in processed foodstuffs are summarized. Sections dedicated to novel foods like microalgae and insects as new sources of allergenic proteins are included, emphasizing the significance of establishing stable marker peptides and validated methods using database searches. The discussion involves the in-silico digestion of allergenic proteins, providing insights into their potential impact on immunogenicity. Finally, case studies focussing on microalgae highlight the value of MS as an effective analytical tool for ensuring regulatory compliance throughout the food control chain.


Assuntos
Hipersensibilidade Alimentar , Humanos , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Peptídeos/análise , Alérgenos , Análise de Alimentos/métodos
4.
Sci Rep ; 13(1): 13972, 2023 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-37633960

RESUMO

The occurrence of methyl carbamates of phosphatidylethanolamines and phosphatidylserines in the lipid extract of mitochondria obtained from mouse embryonic fibroblasts was ascertained by hydrophilic interaction liquid chromatography with electrospray ionization single and multi-stage mass spectrometry, performed using sinergically a high resolution (quadrupole-Orbitrap) and a low resolution (linear ion trap) spectrometer. Two possible routes to the synthesis of methyl carbamates of phospholipids were postulated and evaluated: (i) a chemical transformation involving phosgene, occurring as a photooxidation by-product in the chloroform used for lipid extraction, and methanol, also used for the latter; (ii) an enzymatic methoxycarbonylation reaction due to an accidental bacterial contamination, that was unveiled subsequently on the murine mitochondrial sample. A specific lipid extraction performed on a couple of standard phosphatidyl-ethanolamines/-serines, based on purposely photo-oxidized chloroform and deuterated methanol, indicated route (i) as negligible in the specific case, thus highlighting the enzymatic route related to bacterial contamination as the most likely source of methyl carbamates. The unambiguous recognition of the latter might represent the starting point toward a better understanding of their generation in biological systems and a minimization of their occurrence when an artefactual formation is ascertained.


Assuntos
Clorofórmio , Fosfatidiletanolaminas , Animais , Camundongos , Fibroblastos , Metanol , Fosfatidilserinas , Carbamatos , Mitocôndrias
5.
J Pharm Biomed Anal ; 235: 115628, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37579719

RESUMO

Arsenic-containing lipids, also named arsenolipids (AsLs), are a group of organic compounds usually found in a variety of marine organisms such as fish, algae, shellfish, marine oils, and microorganisms. Numerous AsLs have been recognised so far, from simple compounds such as arsenic fatty acids (AsFAs), arsenic hydrocarbons (AsHCs), and trimethylarsenio fatty alcohols (TMAsFOHs) to more complex arsenic-containing species, of which arsenophospholipids (AsPLs) are a case in point. Mass spectrometry, both as inductively coupled plasma (ICP-MS) and liquid chromatography coupled by an electrospray source (LC-ESI-MS), was applied to organic arsenicals playing a key role in extending and refining the characterisation of arsenic-containing lipids in marine organisms. Herein, upon the introduction of a systematic notation for AsLs and a brief examination of their toxicity and biological role, the most relevant literature concerning the characterisation of AsLs in marine organisms, including edible ones, is reviewed. The use of both ICP-MS and ESI-MS coupled with reversed-phase liquid chromatography (RPLC) has brought significant advancements in the field. In the case of ESI-MS, the employment of negative polarity and tandem MS analyses has further enhanced these advancements. One notable development is the identification of the m/z 389.0 ion ([AsC10H19O9P]-) as a diagnostic product ion of AsPLs, which is obtained from the fragmentation of the deprotonated forms of AsPLs ([M - H]-). The pinpointing product ions offer the possibility of determining the identity and regiochemistry of AsPL side chains. Advanced MS-based analytical methods may contribute remarkably to the understanding of the chemical diversity characterising the metalloid As in natural organic compounds of marine organisms.


Assuntos
Arsênio , Arsenicais , Animais , Arsênio/análise , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas , Ácidos Graxos
6.
Food Chem ; 426: 136636, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37348403

RESUMO

Anacardic acids (AnAs) are important secondary metabolites that occur primarily in plants of the Anacardiaceae family, such as pistachio (Pistacia vera L.). Some AnAs have been associated with health benefits, and the position of the CC double bonds is a crucial feature of these metabolites. Herein, we propose a new strategy based on RPLC separation and detection by ESI-MS/MS, preceded by an epoxidation reaction. The procedure was applied to the green extracts of lignified pistachio shells, and a mixture of AnAs bearing alkyl chains 13:0, 15:0, and 17:1 emerged as prevailing. As positional isomers of AnA 15:1 (Δ8 and Δ6) and AnAs 17:1 (Δ10 and Δ8) were identified for the first time, their discovery paves the way to the systematic study of their potential health-beneficial effects. The developed method was validated and applied to quantify AnAs in pistachio ethanolic extract, showing contents higher than 10 mg/ 100 g of biomass.


Assuntos
Pistacia , Pistacia/química , Espectrometria de Massas em Tandem , Ácidos Anacárdicos , Antioxidantes/química
7.
Chemistry ; 29(44): e202301416, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37249246

RESUMO

The application of N-heterocyclic carbene (NHC) catalysis under highly diluted oxidative condition to the polycondensation of dialdehydes and diols is herein presented as an alternative, atom-economical synthetic route to macrocyclic oligoesters (MCOs). The disclosed protocol paves the way to the straightforward access to MCOs, starting from commercial dialdehydes, avoiding the use of toxic diacyl chlorides, commonly employed in traditional MCOs synthetic processes. The method is totally metal-free, takes place in the green Me-THF solvent and requires the use of a fully recyclable quinone oxidant. The protocol versatility is confirmed by the employment of fossil-based and bio-based monomers such as 2,5-diformylfuran (DFF), 2,5-bis(hydroxymethyl)furan (BHMF), and isomannide, synthesizing a series of novel and known synthetically relevant macrocyclic oligoesters, fully characterized by NMR and MALDI-TOF MS analysis, with product yields (51-86 %) comparable to those obtained by traditional synthetic routes. Finally, to emphasize the synthetic relevance of the target macrocycles, an entropically-driven ring opening polymerization (ED-ROP) key study has been performed, optimizing the organocatalyzed synthesis of poly(2,5-furan-dimethylene 2,5 furandicarboxylate) (PBHMF) with number-average molecular weight up to 8200 g mol-1 and 66 % isolated yield.

8.
Rapid Commun Mass Spectrom ; 37(14): e9527, 2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37117037

RESUMO

RATIONALE: Lyso derivatives of N-acyl-1,2-diacylglycero-3-phosphoethanolamines (L-NAPEs) are a lipid class mostly expressed in vegetables during stress and tissue damage that is involved in the synthesis of the lipid mediator N-acylethanolamines. L-NAPEs can be challenging to distinguish from isomeric phosphatidylethanolamines (PEs), especially in extracted complex samples where they could be confused with abundant PEs. METHODS: In this study, hydrophilic interaction liquid chromatography with electrospray ionization hyphenated with (tandem) mass spectrometry (MS) was proposed to distinguish L-NAPEs and PEs as deprotonated molecules, [M - H]─ , using both high-resolution/accuracy Fourier transform MS and low-resolution linear ion trap (LIT) mass analyzers. MS3 experiments of [M - H - KE]─ as precursor ions (KE, ketene loss) using the LIT instrument allowed us to distinguish between isomeric L-NAPE and PE species. RESULTS: Regiochemical rules were proposed working on enzymatically synthesized L-NAPEs. A few key differences in MS/MS spectra, including abnormal intensity of acyl chain losses as fatty acids, the presence of N-acylphosphoethanolamine ions, and diagnostic ions of the polar head, were disclosed. Additionally, MS3 spectra of [M - H - KE]─ as precursor ions allowed us to confirm the identification of L-NAPE species. The proposed rules were applied to samples extracted from tomato by-products including stems and leaves. CONCLUSIONS: Overall, our methodology is demonstrated as a robust approach to recognizing L-NAPEs in complex samples. L-NAPEs 18:2-N-18:2, 18:2-N-18:3, 18:3-N-18:2, and 18:2-N-18:1 were the prevailing compounds in the analyzed tomato samples, accounting for more than 90%. In summary, a reliable method for identifying L-NAPEs in complex samples is described. The proposed method could prevent overlooking L-NAPEs and overestimating isomeric PE species in future lipid analyses.


Assuntos
Fosfatidiletanolaminas , Espectrometria de Massas em Tandem , Fosfatidiletanolaminas/análise , Fosfatidiletanolaminas/química , Ácidos Graxos/análise , Espectrometria de Massas por Ionização por Electrospray
9.
Molecules ; 28(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36903312

RESUMO

Reversed-phase liquid chromatography and electrospray ionization with Fourier-transform single and tandem mass spectrometry (RPLC-ESI-FTMS and FTMS/MS) were employed for the structural characterization of oleocanthal (OLEO) and oleacin (OLEA), two of the most important bioactive secoiridoids occurring in extra virgin olive oils (EVOOs). The existence of several isoforms of OLEO and OLEA was inferred from the chromatographic separation, accompanied, in the case of OLEA, by minor peaks due to oxidized OLEO recognized as oleocanthalic acid isoforms. The detailed analysis of the product ion tandem MS spectra of deprotonated molecules ([M-H]-) was unable to clarify the correlation between chromatographic peaks and specific OLEO/OLEA isoforms, including two types of predominant dialdehydic compounds, named Open Forms II, containing a double bond between carbon atoms C8 and C10, and a group of diasteroisomeric closed-structure (i.e., cyclic) isoforms, named Closed Forms I. This issue was addressed by H/D exchange (HDX) experiments on labile H atoms of OLEO and OLEA isoforms, performed using deuterated water as a co-solvent in the mobile phase. HDX unveiled the presence of stable di-enolic tautomers, in turn providing key evidence for the occurrence, as prevailing isoforms, of Open Forms II of OLEO and OLEA, different from those usually considered so far as the main isoforms of both secoiridoids (having a C=C bond between C8 and C9). It is expected that the new structural details inferred for the prevailing isoforms of OLEO and OLEA will help in understanding the remarkable bioactivity exhibited by the two compounds.


Assuntos
Olea , Azeite de Oliva/química , Deutério , Olea/química , Iridoides/química , Espectrometria de Massas em Tandem/métodos
10.
Int J Mol Sci ; 24(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36768549

RESUMO

The effect of mycotoxin patulin (4-hydroxy-4H-furo [3,2c] pyran-2 [6H] -one) on the mitochondrial carnitine/acylcarnitine carrier (CAC, SLC25A20) was investigated. Transport function was measured as [3H]-carnitineex/carnitinein antiport in proteoliposomes reconstituted with the native protein extracted from rat liver mitochondria or with the recombinant CAC over-expressed in E. coli. Patulin (PAT) inhibited both the mitochondrial native and recombinant transporters. The inhibition was not reversed by physiological and sulfhydryl-reducing reagents, such as glutathione (GSH) or dithioerythritol (DTE). The IC50 derived from the dose-response analysis indicated that PAT inhibition was in the range of 50 µM both on the native and on rat and human recombinant protein. The kinetics process revealed a competitive type of inhibition. A substrate protection experiment confirmed that the interaction of PAT with the protein occurred within a protein region, including the substrate-binding area. The mechanism of inhibition was identified using the site-directed mutagenesis of CAC. No inhibition was observed on Cys mutants in which only the C136 residue was mutated. Mass spectrometry studies and in silico molecular modeling analysis corroborated the outcomes derived from the biochemical assays.


Assuntos
Patulina , Humanos , Animais , Ratos , Escherichia coli/metabolismo , Cisteína/metabolismo , Reagentes de Sulfidrila/farmacologia , Carnitina/farmacologia , Carnitina/metabolismo , Glutationa/metabolismo , Proteínas de Membrana Transportadoras
11.
Mass Spectrom Rev ; 42(5): 1557-1588, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34570373

RESUMO

Surfactants are surface-active agents widely used in numerous applications in our daily lives as personal care products, domestic, and industrial detergents. To determine complex mixtures of surfactants and their degradation products, unselective and rather insensitive methods, based on colorimetric and complexometric analyses are no longer employable. Analytical methodologies able to determine low concentration levels of surfactants and closely related compounds in complex matrices are required. The recent introduction of robust, sensitive, and selective mass spectrometry (MS) techniques has led to the rapid expansion of the surfactant research field including complex mixtures of isomers, oligomers, and homologues of surfactants as well as their chemically and biodegradation products at trace levels. In this review, emphasis is given to the state-of-the-art MS-based analysis of surfactants and their degradation products with an overview of the current research landscape from traditional methods involving hyphenate techniques (gas chromatography-MS and liquid chromatography-MS) to the most innovative approaches, based on high-resolution MS. Finally, we outline a detailed explanation on the utilization of MS for mechanistic purposes, such as the study of micelle formation in different solvents.

12.
J Am Soc Mass Spectrom ; 33(11): 2108-2119, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36264209

RESUMO

An analytical approach based on reversed-phase liquid chromatography coupled to electrospray ionization Fourier-transform mass spectrometry in negative ion mode (RPLC-ESI-(-)-FTMS) was developed for the untargeted characterization of glucosinolates (GSL) in the polar extracts of four Brassica microgreen crops, namely, garden cress, rapeseed, kale, and broccoli raab. Specifically, the all ion fragmentation (AIF) operation mode enabled by a quadrupole-Orbitrap mass spectrometer, i.e., the systematic fragmentation of all ions generated in the electrospray source, followed by the acquisition of an FTMS spectrum, was exploited. First, the best qualifying product ions for GSL were recognized from higher-energy collisional dissociation (HCD)-FTMS2 spectra of representative standard GSL. Extracted ion chromatograms (EIC) were subsequently obtained for those ions from RPLC-ESI(-)-AIF-FTMS data referred to microgreen extracts, by plotting the intensity of their signals as a function of retention time. The alignment of peaks detected in the EIC traces was finally exploited for the recognition of peaks potentially related to GSL, with the EIC obtained for the sulfate radical anion [SO4]•- (exact m/z 95.9523) providing the highest selectivity. Each putative GSL was subsequently characterized by HCD-FTMS2 analyses and by collisionally induced dissociation (CID) multistage MSn (n = 2, 3) acquisitions based on a linear ion trap mass spectrometer. As a result, up to 27 different GSLs were identified in the four Brassica microgreens. The general method described in this work appears as a promising approach for the study of GSL, known and novel, in plant extracts.


Assuntos
Brassica , Glucosinolatos , Glucosinolatos/análise , Glucosinolatos/química , Cromatografia Líquida/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Íons/química , Extratos Vegetais
13.
Free Radic Biol Med ; 188: 395-403, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35792242

RESUMO

Both toxic and physiological effects of CO are mostly caused by well described interactions with heme-groups of proteins. Interactions of CO with non-heme proteins have also been unveiled. Besides interaction of CO with mitochondrial heme containing respiratory complexes, a BK channel and the phosphate carrier which do not contain metal cofactors, have been identified as CO targets. However, the molecular mechanisms of interaction with non-metal-containing proteins are not understood. We show in this work the effect of CO on the mitochondrial carnitine carrier (SLC25A20) using CORM-3, a widely recognized CO releasing compound. CO exerts an inhibitory effect at the micromolar concentration on the transport function of the transporter extracted from treated mitochondria. The effect is due to a single Cys residue, C136 as revealed by mass spectrometry analysis. A computational approach predicted the need for vicinal Asp and Lys residues for the C136 carbonylation to occur. These data demonstrate a novel mechanism of interaction of CO with a protein not containing metal atoms and will enable the prediction of CO targets.


Assuntos
Monóxido de Carbono , Compostos Organometálicos , Monóxido de Carbono/metabolismo , Monóxido de Carbono/farmacologia , Carnitina/análogos & derivados , Carnitina/metabolismo , Heme/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/metabolismo , Compostos Organometálicos/farmacologia
14.
Food Chem ; 393: 133319, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35653991

RESUMO

Spirulina (Arthrospira platensis) proteins were extracted, digested, and analyzed by LC-ESI-FTMS/MS to find highly conserved peptides as markers of the microalga occurrence in foodstuffs. Putative markers were firstly chosen after in silico digestion of allergenic proteins, according to the FAO and WHO criteria, after assuring their presence in food supplements and in (un)processed foodsuffs. Parameters such as sensitivity, sequence size, and uniqueness for spirulina proteins were also evaluated. Three peptides belonging to C-phycocyanin beta subunit (P72508) were designated as qualifiers (ETYLALGTPGSSVAVGVGK and YVTYAVFAGDASVLEDR) and quantifier (ITSNASTIVSNAAR) marker peptides and used to validate the method for linearity, recovery, reproducibility, matrix effects, processing effects, LOD, and LOQ. The main aim was to determine spirulina in commercial foodstuffs like pasta, crackers, and homemade bread incurred with the microalga. The possible inclusion of the designated peptides in a standardized method, based on multiple reaction monitoring using a linear ion trap MS, was also demonstrated.


Assuntos
Microalgas , Spirulina , Alérgenos , Animais , Decapodiformes , Peptídeos , Reprodutibilidade dos Testes
15.
Molecules ; 27(8)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35458772

RESUMO

A significant area of study and upgrading for increasing sensitivity and general performances of matrix-assisted laser-desorption ionization (MALDI) mass spectrometry (MS) is related to matrix design. Several efforts have been made to address the challenge of low-mass-region interference-free for metabolomics analysis and specifically for lipidomics. To this aim, rationally designed matrices as 4-chloro-α-cyanocinnamic acid (ClCCA) were introduced and reported to provide enhanced analytical performances. We have taken this rational design one step further by developing and optimizing new MALDI matrices with a range of modifications on the CHCA core, involving different functionalities and substituents. Of particular interest was the understanding of the electron-withdrawing (e.g., nitro-) or donating (e.g., methoxy-) effects along with the extent of conjugation on the ionization efficiency. In the present work, ten matrices were designed on a reasonable basis, synthesized, and characterized by NMR and UV spectroscopies and laser desorption ionization. With the assistance of these putative MALDI matrices, samples containing phospholipids (PL), and neutral di-/tri-acylglycerols (DAG, TAG) were investigated using milk, fish, blood, and human plasma extracts. In comparison with CHCA and ClCCA, four of them, viz. [(2E,4E)-2-cyano-5-(4-methoxyphenyl)penta-2,4-dienoic acid] (1), [(2E,4E)-2-cyano-5-(4-nitrophenyl)penta-2,4-dienoic acid] (2), [(E)-2-cyano-3-(6-methoxynaphthalen-2-yl)acrylic acid] (6) and [(E)-2-cyano-3-(naphthalen-2-yl)acrylic acid] (7) displayed good to even excellent performances as MALDI matrices in terms of ionization capability, interference-free spectra, S/N ratio, and reproducibility. Especially compound 7 (cyano naphthyl acrylic acid, CNAA) was the election matrix for PL analysis and matrix 2 (cyano nitrophenyl dienoic acid, CNDA) for neutral lipids such as DAG and TAG in positive ion mode.


Assuntos
Lipídeos , Leite , Animais , Lasers , Lipídeos/análise , Leite/química , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
16.
J Am Soc Mass Spectrom ; 33(5): 823-831, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35442668

RESUMO

Water-soluble diacyl arsenosugar phospholipids (As-PL) are natural products widespread in marine animals and algae, including the brown alga Undaria pinnatifida, also known as wakame. The systematic recognition of As-PL has been hampered by the lack of standard and of qualitative methods to establish the carbon-carbon double bond positions of unsaturated fatty acyl chains. Here, the epoxidation reaction of fatty acyl substituents of As-PL was carried out with high selectivity by meta-chloroperoxybenzoic acid and the C-C double bond localization was established by collision-induced dissociation of epoxidized species as deprotonated molecules, [epoM - H]-. Reversed-phase liquid chromatography (RPLC) separation and a sequential triple-stage MS (i.e., MS3) analysis of unsaturated and epoxidized As-PL were very helpful to characterize the carbon-carbon double bond locations of both sn-1 and sn-2 fatty acyl chains, starting from a diagnostic product ion pair with 16.0 Da mass difference. These results indicate that intact As-PL can be annotated in terms of fatty acyl chain composition and in terms of their C-C double bond position(s). Interestingly, hexadecenoic (16:1 Δ9) and octadecenoic (18:1 Δ9) along with octadecadienoic (18:2 Δ9,12) and octadecatrienoic (18:3 Δ9,12,15) were found to be the most abundant unsaturated fatty acyl chains of As-PL in the brown alga wakame, thus confirming it as a good source of essential fatty acids with a balanced ω6/ω3 ratio. Although the toxicity of As-including metabolites of algal As-PL is still a matter of debate and needs to be studied in more detail, the described approach can be exploited to assess if As-PL could contribute to the supply of essential fatty acids related to the use of algae as nutritious food.


Assuntos
Alga Marinha , Undaria , Animais , Arseniatos , Carbono , Monossacarídeos , Fosfolipídeos/análise , Extratos Vegetais , Undaria/química
17.
J Agric Food Chem ; 70(7): 2410-2423, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35144380

RESUMO

Microgreens are a special type of vegetal product, born as a culinary novelty (traditionally used to garnish gourmet dishes) and then progressively studied for their potentially high content in nutraceuticals, like polyphenolic compounds, carotenoids, and glucosinolates, also in the perspective of implementing their cultivation in space stations/colonies. Among further potential nutraceuticals of microgreens, lipids have received very limited attention so far. Here, glycerophospholipids contained in microgreens of typical oleaginous plants, namely, soybean, chia, flax, sunflower, and rapeseed, were studied using hydrophilic interaction liquid chromatography (HILIC), coupled to high-resolution Fourier transform mass spectrometry (FTMS) or low-resolution collisionally induced dissociation tandem mass spectrometry (CID-MS2) with electrospray ionization (ESI). Specifically, this approach was employed to obtain qualitative and quantitative profiling of the four main classes of glycerophospholipids (GPL) found in the five microgreens, i.e., phosphatidylcholines (PC), phosphatidylethanolamines (PE), phosphatidylglycerols (PG), and phosphatidylinositols (PI). Saturated chains with 16 and 18 carbon atoms and unsaturated 18:X (with X = 1-3) chains emerged as the most common fatty acyl substituents of those GPL; a characteristic 16:1 chain (including a C═C bond between carbon atoms 3 and 4) was also found in some PG species. Among polyunsaturated acyl chains, the 18:3 one, likely referred mainly to α-linolenic acid, exhibited a relevant incidence, with the highest estimated amount (corresponding to 160 mg per 100 g of lyophilized vegetal tissue) found for chia. This outcome opens interesting perspectives for the use of oleaginous microgreens as additional sources of essential fatty acids, especially in vegetarian/vegan diets.


Assuntos
Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Cromatografia Líquida/métodos , Interações Hidrofóbicas e Hidrofílicas , Fosfatidilcolinas/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos
18.
Talanta ; 240: 123188, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34990986

RESUMO

Since novel nutrient sources with high protein content, such as yeast, fungi, bacteria, algae, and insects, are increasingly introduced in the consumer market, safety evaluation studies on their potentially allergenic proteins are required. A pipeline for in silico establishing the sequence-based homology between proteins of spirulina (Arthrospira platensis) and chlorella (Chlorella vulgaris) micro-algae and those included in the AllergenOnline (AO) database (AllergenOnline.org) is described. The extracted proteins were first identified through tryptic peptides analysis by reversed-phase liquid chromatography and high resolution/accuracy Fourier-transform tandem mass spectrometry (RPLC-ESI-FTMS/MS), followed by a quest on the UniProt database. The AO database was subsequently interrogated to assess sequence similarity between identified microalgal proteins and known allergens, based on criteria established by the World Health Organization (WHO) and Food and Agriculture Organization (FAO). A direct search for microalgal proteins already included in allergen databases was also performed using the Allergome database. Six proteins exhibiting a significant homology with food allergens were identified in spirulina extracts. Five of them, i.e., two thioredoxins (D4ZSU6, K1VP15), a superoxide dismutase (C3V3P3), a glyceraldehyde-3-phosphate dehydrogenase (K1W168), and a triosephosphate isomerase (D5A635), resulted from the search on AO. The sixth protein, C-phycocyanin beta subunit (P72508), was directly obtained after examining the Allergome database. Two proteins exhibiting significant sequence homology with food allergens were retrieved in chlorella extracts, viz. calmodulin (A0A2P6TFR8), which is related to troponin c (D7F1Q2), and fructose-bisphosphate aldolase (A0A2P6TDD0). Specific serum screenings based on immunochemical tests should be undertaken to confirm or rule out the allergenicity of the identified proteins.


Assuntos
Chlorella vulgaris , Microalgas , Spirulina , Alérgenos , Proteômica , Homologia de Sequência
19.
Foods ; 10(9)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34574160

RESUMO

Secoiridoids play a key role in determining health benefits related to a regular consumption of extra-virgin olive oil (EVOO), in which they are generated from precursors of the same class naturally occurring in drupes and leaves of the olive (Olea europaea L.) plant. Here, reversed-phase liquid chromatography coupled to electrospray ionization and Fourier-transform single/tandem mass spectrometry (RPLC-ESI-FTMS and MS/MS) was employed for a structural elucidation of those precursors. The presence of three isoforms in both matrices was assessed for oleuropein ([M-H]- ion with m/z 539.1770) and was emphasized, for the first time, also for ligstroside (m/z 523.1821) and for the demethylated counterparts of the two compounds (m/z 525.1614 and 509.1665, respectively). However, only the prevailing isoform included an exocyclic double bond between carbon atoms C8 and C9, typical of oleuropein and ligstroside; the remaining, less abundant, isoforms included a C=C bond between C8 and C10. The same structural difference was also observed between secoiridoids named elenolic acid glucoside and secoxyloganin (m/z 403.1246). This study strengthens the hypothesis that secoiridoids including a C8=C10 bond, recently recognized as relevant species in EVOO extracts, arise mainly from specific enzymatic/chemical transformations occurring on major oleuropein/ligstroside-like precursors during EVOO production, rather than from precursors having that structural feature.

20.
J Mass Spectrom ; 56(10): e4784, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34528340

RESUMO

The uncontrolled activation of endogenous enzymes may introduce both qualitative and quantitative artefacts when lipids are extracted from vegetal matrices. In the present study, a method based on hydrophilic interaction liquid chromatography coupled either to high-resolution/accuracy Fourier-transform mass spectrometry (HILIC-ESI-FTMS) or to linear ion trap multiple stage mass spectrometry (HILIC-ESI-MSn , with n = 2 and 3) with electrospray ionization was developed to unveil one of those artefacts. Specifically, the artificial generation of methyl esters of phosphatidic acids (MPA), catalysed by endogenous phospholipase D (PLD) during lipid extraction from five oleaginous microgreen crops (chia, soy, flax, sunflower and rapeseed), was studied. Phosphatidylcholines (PC) and phosphatidylglycerols (PG) were found to be the most relevant precursors of MPA among glycerophospholipids (GPLs), being involved in a transphosphatidylation process catalysed by PLD and having methanol as a coreactant. The combination of MS2 and MS3 measurements enabled the unambiguous recognition of MPA from their fragmentation pathways, leading to distinguish them from isobaric PA including a further CH2 group on their side chains. PLD was also found to catalyse the hydrolysis of PC and PG to phosphatidic acids (PAs). The described transformations were confirmed by the remarkable decrease of MPA abundance observed when isopropanol, known to inhibit PLD, was tentatively adopted instead of water during the homogenization of microgreens. The unequivocal identification of MPA might be exploited to assess if GPL alterations are actually triggered by endogenous PLD during lipid extractions from specific vegetal tissues.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...